
Solutions: 

1. Sun 

a) Understanding the Black Body radiation 

The only difficulty in this problem is to find the density of states 𝐷𝛾(ℏ𝜔). Since photons are 

quantum mechanical particle the obey Heisenberg’s uncertainty relation*: 

Δ𝑥Δ𝑝 ≥ ℎ 

In an object of finite volume V a photon is totally delocalized and one gets a relation for Δ𝑝3: 

Δ𝑝3 =
ℎ3

𝑉
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For photons hold the following relation between energy and momentum: 

𝑝𝑐 = ℏ𝜔 

and so the number of states is contained inside a sphere with radius 𝑝: 

𝑁𝛾 =
4

3
𝜋
𝑝3

Δ𝑝3
=
4

3
𝜋
𝑉(ℏ𝜔)3

h3𝑐3
 

An additional factor of two for the number of states comes from the two possibilities of 

polarization. The density of states follows from the total number of states by differentiating: 

𝐷𝛾(ℏ𝜔) = 2
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The distribution function for photons is the Bose-Einstein distribution function: 

𝑓𝛾(ℏ𝜔) =
1
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− 𝜇𝛾) − 1
 

The chemical potential for photons is zero. As a “simple” interpretation of that fact one can 

say, that no energy is needed for the process of producing a photon. From this the following 

expression follows: 
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For the energy density it follows then: 

𝑑𝑒𝛾(ℏ𝜔)
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* This restricts the number of photons in a certain phase space volume. This is quite important since for classical point-like objects it holds that 
𝛥𝑥𝛥𝑝 = 0. This would make it possible to have an infinite number of photons in a cavity, which however would lead to an infinite energy density 
resulting the famous ultraviolet catastrophe. 
 
 
 



b) Radiation from the sun towards the earth 

We assume that the sun is a perfect black body. The radiation power can be obtained by 

calculating the energy current density and then the energy current (compare the units). An 

expression for the energy current density is similar to a charge current density**: 

𝑑𝑗𝑆𝑢𝑛 =
𝑒𝛾

4𝜋
⋅ 𝑐 𝑑Ω 

To obtain the radiation power it is then needed to integrate over the whole area of the black 

body: 

𝑑𝑃𝑆𝑢𝑛 = 𝑑𝑗𝑆𝑢𝑛𝑑𝐴𝑆𝑢𝑛 

𝑃𝑆𝑢𝑛 =
𝑒𝛾

4
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= 𝜎𝑇4𝐴𝑆𝑢𝑛 ≈ 3.85 ⋅ 10
26𝑊 

By the calculation above one has to be careful with the definition of the solid angle with 

respect to the surface element 𝑑𝐴: 𝑑Ω = 𝑑𝐴/𝑅2 = 2𝜋 cos 𝜃 sin 𝜃 𝑑𝜃. 

The amount of energy per day which the earth receives can be calculated by adapting the 

solid angle and integrating over the time. 

𝑑𝐸𝐸𝑎𝑟𝑡ℎ =
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𝑡𝐷𝑎𝑦 ≈ 1.5 ⋅ 10
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The air mass is affecting the results by a different 𝑒𝛾! The air mass is determined by the 

absorption of different gases in the atmosphere. 

 
** The correspondence to an electronic density current follows by identifying 𝑒𝛾 = 𝜌𝐶 and 𝑐 = 𝑣. 
 
 

 

c) Modeling a real solar cell, Part 1 

In the lecture the following equation was obtained: 

𝑆𝑚𝑜𝑑𝑢𝑙𝑒 = 𝑆ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙
sin(𝛼 + 𝛽 + 𝛿)

sin(𝛼 + 𝛿)
 

On the 21st of March 𝛿 = 0° and Karlsruhe is at 𝛼 = 49°. 



2. Carrier dynamics in Semiconductors 

a) Diffusion current density 

With the starting point for the current density: 

𝑗 = 𝑞𝜙 = 𝑞
𝑙 ̅

2𝜏
(𝑛(𝑥) − 𝑛(𝑥 + 𝑙)) 

one can find the following expression by a Taylor expansion for small 𝑙: 

𝑗𝐷 ≈ 𝑞
𝑙 ̅

2𝜏
(𝑛(𝑥) − 𝑛(𝑥) − 𝑙

𝜕𝑛(𝑥)

𝜕𝑥
) 

= −𝑞
𝑙𝑙 ̅

2𝜏

𝜕𝑛(𝑥)

𝜕𝑥
= −𝑞𝐷

𝜕𝑛(𝑥)

𝜕𝑥
 

b) Field induced current density 

For this problem one needs Ohm’s law: 

𝑗 = 𝜎𝐸 

and the relation between the conductivity 𝜎 and the mobility 𝜇: 

𝜎 = 𝑞𝑛(𝑥)𝜇 

Inserting this into Ohm’s law leads to: 

𝑗𝐹 = 𝜎𝐸 = 𝑞𝜇𝑛(𝑥)𝐸 

 

c) Diffusion equation 

Continuity equation: 

𝜕𝑡𝜌 + 𝜕𝑥𝑗 = 0 

Inserting both expressions for the current and making the assumption that the 

external field is homogenous leads to: 

𝜕𝑥(𝑗𝐹 + 𝑗𝐷) = −𝑞𝐷
𝜕2𝑛(𝑥)

𝜕𝑥2
+ 𝑞𝜇𝐸

𝜕𝑛(𝑥)

𝜕𝑥
 

 

Recombination and generation of charge carriers: 

𝑈 − 𝐺 

 

 

 

 

 

 

 

 

 

 



 

3. Semiconductor 

a) What is a semiconductor? 

Since electrons are fermions there distribution is the Fermi-Dirac distribution function: 

𝑓(𝐸) =
1

exp (
𝐸 − 𝐸𝐹
𝑘𝑇

) + 1
 

The characteristic of this function is that for 𝐸 < 𝐸𝐹 , 𝑓(𝐸) ≈ 1 and for 𝐸 > 𝐸𝐹 , 𝑓(𝐸) ≈

0. To obtain the behavior at 𝐸 = 𝐸𝐹 at 𝑇 = 0𝐾 one has to differentiate the function with 

respect to 𝐸. 

𝑓′(𝐸)|𝑇=0 = ∞ 

So at 𝑇 = 0  𝐾 the distribution function is a step function. 

b) Everything is written in the slides 

c) Diffusion potential 

In the equilibrium state there is no current flow so: 
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= 0 ⇒ 𝑗𝐹 = −𝑗𝐷 
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𝑒

𝑘𝑇
∫ 𝑑𝜙
𝜙𝑝

=
𝑒

𝑘𝑇
𝑈𝐷 = ln(𝑛𝑛/𝑛𝑝) 

 


